
Not only can the sequencing of these patterns e�iciently automate tasks with certainty, but
these are also the kinds of optimized experiences that will build meaningful relationships
between humans and machines. They should be designed as something ongoing that will
evolve — not as a series of disconnected transactions, but as contextual relationships.
Thinking beyond transactional relationships to contextual relationships creates the
opportunity to change the presence of software and machines in our lives so that technology
can be always present but never invasive.

Conversational Design Patterns

This work often begins with in-depth journey maps created by Lead Experience Architects and
Design Strategists. These journey maps are used to de�ine the experiences that make up your
ecosystem, and they come to life as key patterns are identi�ied and later �leshed out through
production design. The real value comes from sequencing technologies to create experiences
that are improvements on current work�lows and provide better-than-human experiences.

At OneReach.ai, we’ve studied numerous highly-rated experiences over the years and have noted
scores of patterns that lead to good experiences. Keeping these patterns in mind as you create a
vision for your experiences—and build the framework of the ecosystem that will bring those
experiences to life—can help create a paradigm for accelerated service.

To help contextualize these patterns,
recognize that many of them are frequently
sequenced around GPS technology.

Imagine this scenario: you’ve got some extra
time as you’re driving through an unfamiliar
area to a meeting, so you ask your
smartphone if there’s a coffee shop nearby.
This is the QUESTION & ANSWER pattern
activated. The answer might come back in
the form of pinpoints on a map, using the
CONTEXTUALIZE pattern to �ind a coffee
shop closest to you. The system can then
GUIDE you, navigating you to the coffee
shop. It can also use the PREDICT pattern to
identify a tra�ic accident up ahead that
could cause a delay. It can NUDGE you to let
you know that you might want to take a side
street. This is a multimodal journey that
incorporates voice, text, and graphical
interface, and it can evolve to include other
patterns, like TRANSACT — perhaps letting
you order and pay for your coffee ahead of
time, so you can be sure to make your
meeting on time.

Patterns in Action

When working with conversational AI,
before you touch any technology you need
to envision the experience you want to
create.

1Conversational Design Patterns

QUESTION
AND

ANSWERS

FIND

C
O

N
TE

X
TU

A
LI

ZE

MEMORIZE

GUIDE

C
A

LL
BA

C
K

CHASE

NUDGE

TR
A

N
SA

C
T

C
O

O
RD

IN
AT

E TRACK

TE
A

C
H

PR
ED

IC
T

HUMAN IN THE LOOP (HITL)

SHARE

PROCESS MINING

HCO

D
RI

P

P&A

NEGOTIATE

REMIND

METACOGNITIVE BEHAVIOR

M
IT

M
AAD

ANOMALY
DETECTION

Look for
an answerRemember for fast retrieval

G
ai

n
ne

w
in

si
gh

tHumans step in to help IDWs
A

cc
om

pl
is

h
a

ta
sk

D
el

eg
at

e
bu

sy
w

or
k

Get user where they
need to go

Modify behavior

Re
du

ce
 w

ai
tin

g

Pl
an

D
at

a
as

 th
e

st
ar

tin
g

po
in

t
Store or log data

Respond

Retrieve
Information

Disseminate relevant
information

Analyze data for
useful information

Humans make all important
decisions

Se
rie

s
of

 a
nn

ou
nc

em
en

ts

Reminders and
tasks for inbound

users

Offsetting unwanted outcomes

Create
awareness

IDWs managing their learning

H
an

d
us

er
s

off
 ID

W
s

Look for
holes in data

Look for
deviations

2Conversational Design Patterns

DRIP. DRIP is a series of announcements; it can be used for
reporting and making enhancements that don’t require
immediate feedback. It’s a bit like CHASE without the
knowledge base, and providing future context. For example,
DRIP would o�er: “Don’t forget, you have an appointment on
Monday at 3:30pm,” whereas CHASE would o�er: “Please
con�rm your appointment on Monday at 3:30pm by replying
Y or N.” DRIP often represents a content journey, one that’s
presented in a predetermined sequence. For example, a DRIP
might have a series of �ve deliberately spaced out messages
that go out to �rst-time customers as part of an on-boarding
experience with a new product.

CALLBACK. Another proactive pattern, CALLBACK is
focused on resuming a prior activity. This is geared
toward pausing an activity and setting a follow-up —
an interval that could be dependent on a certain
amount of time lapsing, or on the emergence of a
new piece of data.

•

•
•

• QUESTION AND ANSWERS (Q&A). Users ask the
machine a question and it looks for the answer using
natural language understanding (NLU) and a knowledge
base designed for providing answers. The Q&A pattern
highlights one area where conversation isn’t always the
best solution: browsing. Q&A is a way to help resolve a
question that the user has, but depending on your use
case, giving them the option to browse data, products,
or a FAQ page might be more useful.
Adding a graphical UI in addition to the conversational
UI can be a way to solve this. For example, if someone
asks about what types of services are available, the IDW
can point them to the page on the website that lists all
of the services. In ecosystems built for
hyperautomation, the IDW can also turn to a
human-in-the-loop if it doesn’t have an answer.

FIND. Users ask the machine to look up information
based on certain queries. The machine queries an API
and gets a set of results that it can show the user. This
might feedback into known answers for Q&A or help
with transactions or establish the user’s identity. Even
though Q&A and FIND seem similar, they are very
different patterns. FIND is a good pattern to employ if
Q&A fails to help. In the context of FIND, when a
machine’s training doesn’t allow it to answer the
question, it can search external sources, usually via API.

• NUDGE. NUDGE is a soft push toward a desired
outcome, but in a manner that’s less intrusive than
CHASE. It’s designed to provide extra information in a
structured way that will either subconsciously motivate
users to take a particular action or more distinctly
prompt them to consciously make the
intended choice. A tangible example would be painted
lines on a road that clearly delineate cyclists from
drivers.

•

• MEMORIZE. This pattern can also establish
conversational patterns at-large across multiple
users. MEMORIZE can be used to understand the
common conversations and questions that users
engage in. Flows built for memorization will store
information so that it can be used for reporting,
making enhancements to the knowledge base, and
providing future context. When designing your
conversations, you should make sure that you set
them up to store data so that you can utilize
MEMORIZE. Ultimately, this context helps to build
relationships rather than just one-off transactions.

CHASE. CHASE is more aggressive than simple
reminders; �lows built for this will activate continuously
until a certain criterion is met. For example, a proactive
pattern would hunt down an answer to a particular
question. If a user doesn’t provide it, the machine will
move on to another user—or else continue to repeat
the query until it gets its answer. Often, successful
resolution will involve escalation.

 • REMIND. REMIND is a proactive pattern that gives
users information at a particular time and in a
speci�ic way in order to take action. This could be
for an upcoming appointment or to establish a new
habit. In order to succeed with this very common
pattern, send out reminders over whatever channel
your customer prefers. In fact, this is another
chance to employ the MEMORIZE pattern—noting
preferred channels for engagement. To use REMIND
successfully, design around the reminder and create
a conversational experience that goes beyond the
�irst obvious step.

TRACK. This is similar to MEMORIZE but isn’t
necessarily used for long-term memorization. For
example, the machine might memorize how many
times a user goes from point A to B, tracking that
everything between point A to B is being logged
and used. Flows that track are keeping in mind a
“current state”—as well as all the prior states that
led to that point.

Key Patterns for Lead Experience Architects
and Design Strategists to Keep in Their Back Pocket

3Conversational Design Patterns | Key Patterns for Lead Experience Architects

NEGOTIATE. If someone asks an IDW if you can check
into a hotel room early and it replies that check-in time
is 4 pm, they might be inclined to call and try and
persuade someone to bend the rules their way. Trying
to persuading a machine is futile, but you can prevent
that phone call by building negotiation into the
process. In this case, the IDW can negotiate by saying
something like, “If our regular check-in time of 4pm
doesn’t work for you, let me see if I can try and work
something out and get back to you.” This gives the user
the impression that calling would be futile, so they’ll
wait to hear back from the IDW—likely employing HITL
to get an answer.

PROMISES AND ASSIGNMENTS (P&A). This pattern was
inspired by a concept that developers often use in JavaScript
that has an asynchronous component to it: someone either
promises to take care of a certain task the next time they login,
or assigns someone else to take care of a task when they next
login. In most scenarios people tend to think of interactions
with machines as being either inbound (someone is calling you)
or outbound (you reach out or are responding to someone).
PROMISES AND ASSIGNMENTS represents a third category, the
real-life equivalent of which would be me telling you, “Hey, next
time you talk to Teddy, remind him he owes me $100.” Within
an ecosystem for hyperautomating, this takes the form of a
queue of assignments, so that the next time Teddy contacts the
organization, he receives these assignments. It’s almost like an
inbox that only reveals its queue of messages when someone
makes inbound contact. You already see this pattern used by
cellphone companies: when you call, they remind you that
you’re due for a device upgrade.

•

•

•

COORDINATE. This pattern is meant to get several
participants working together around a particular
goal. This might be used to schedule a meeting or
gather shared input. This is a more complex pattern
that will often have sub-patterns like CHASE, TRACK,
and TRANSACT working together.

TEACH. This pattern teaches users how to do
something, often launching from Q&A. The purpose is
to provide a series of lessons and/or instruction,
which can occur in a single session or across multiple
sessions.

TRANSACT. This pattern helps users accomplish a
particular task. There’s a goal in mind and a desired
outcome; common examples would be scheduling an
appointment or ordering a product. TRANSACT can
also be used for minor changes to a setting or to add a
new communication preference. Flows will have a
structured script that needs particular information to
complete the task, with task completion being the
primary measure.

CONTEXTUALIZE. With CONTEXTUALIZE, the
machine is trying to extract context from the
conversation using stored data as a starting point. It
will query its contextual storage and try to “continue”
from that context. Examples could include using time
of day, location, the task at hand, or a prior
conversation or message in order to establish
context. The CONTEXTUALIZE pattern is bene�icial in
that it allows the machine to use context to improve
the conversational experience by cutting out the
need for starting from the beginning—such as asking
questions like “Are you a customer? When was your
most recent purchase?”. This pattern goes hand in
hand with the MEMORIZE pattern.

• PREDICT. With this pattern the machine uses past
interactions and contextual data to predict what a
user might be trying to do, often suggesting possible
outcomes, such as by saying: “This option is
statistically more likely to produce your desired
outcome.” By reviewing all available data to predict
possible outcomes, PREDICT eliminates unnecessary
steps to make the conversation as e�icient as
possible.

SHARE. This pattern is designed to share information
with people who need it. This proactive pattern helps
disseminate information in a relevant or contextual
way. Flows that use SHARE will send out messages or
links bearing useful information.

• GUIDE. With this pattern, the machine literally guides a
user from point A to point B, such as in a scripted
conversation or a sequence of questions. GUIDE could
also help with a particular sequence over time, like
checking in each day to help users stay on track with a
speci�ic goal. Flows built to guide keep in mind
progression and sequence with the milestones or the
ultimate outcome they’re meant to achieve. GUIDE is
also a critical pattern for the concierge skill, which
greets users.
Concierge evaluates a user’s needs using patterns like
CONTEXTUALIZE and Q&A; then, it uses GUIDE to
connect users to the other skills in the ecosystem that
will help them achieve their goals. Without GUIDE, a
user would be left guessing what an IDW might be
capable of, asking questions that wouldn’t help the
system differentiate what they’re *really* asking for.
Interactions that follow the user’s lead can be complex
and di�icult to build, which can lead to a common
mistake with conversational design: overpromising or
letting users expect that your machine can do more
than it actually can. Set expectations for your user by
guiding them—rather than imposing on them to guide
the machine.

With inbound calls this pattern can be used to deftly avoid
prolonged calls. For instance, if someone who recently
placed an order calls in, there’s an assignment at the top of
their queue to let them know: “I see you ordered something
from us earlier this week. Good news—your order has
shipped! Would you like the tracking information?” A
personalized experience like this saves the user time and
engenders con�dence in the IDW. PROMISES AND
ASSIGNMENTS is an amazing pattern because it allows you
to go further without annoying people. They've already
reached out to you; meet them with some useful
information that can save them time.

4Conversational Design Patterns | Key Patterns for Lead Experience Architects

ANOMALY DETECTION. This is a process mining
pattern for detecting anomalies in data, such as events
or deviations from what is standard or expected.

HUMAN-CONTROLLED OUTCOMES (HCO).
Hyperautomation needs to be human led at every level.
Machines’ abilities to make e�icient decisions on their
own will continue to improve, but it’s crucial to keep
people in control of outcomes. People don’t want to live
under strict orders from machines — even if those
machines are designed to maximize e�iciency. But
people will likely look forward to interacting with
machines that regularly offer e�iciency-improving
suggestions.

PROCESS MINING. A machine can be trained to
analyze data with the objective of identifying
patterns, ine�iciencies, and opportunities in both
current and historical processes and events.

ANOMALOUS ABSENCE DETECTION (AAD). An
especially valuable type of anomaly detection involves
regular evaluation of data with the particular goal of
detecting something humans aren’t typically good at
spotting: the absence of data. Essentially, the machine
identi�es patterns and meaning in the absence of data,
and treats each absence as an event—which in some
cases could amount to identifying missed opportunities or
opportunity costs.

MACHINE-IN-THE-MIDDLE (MITM). This is a relatively
simple pattern that involves a live agent handing off a
user to an IDW in order to perform a task that a machine
can do more e�iciently. For instance, if you’ve been
talking to an agent to arrange speci�ic details of a
purchase, that agent can then hand you over to an IDW
to collect payment information (maybe a text pops up
on your phone requesting your credit card number or a
photo of the back of your card). Another example: you
email a service-provider with a query and an IDW tasked
with reviewing emails sent to their support team detects
missing information. You get a follow-up email from the
IDW requesting your account number and the service
address, so that when the agent pulls up the ticket, all of
the information is there. This unburdens the agent from
having to do additional follow-ups and helps your
request reach a faster resolution.

This is also an important pattern to keep in mind
because it demonstrates that there are plenty of
creative ways to create automations that don’t require
APIs or extensive integration.
MACHINE-IN-THE-MIDDLE can simply be that an IDW
that receives an inbound email, uses NLU to see review
the content, and determines whether there's missing
information. The IDW can reply right away asking users
for missing data—no integration necessary.

• HUMAN IN THE LOOP (HITL). Automation is only as
good as the data at its disposal. In this powerful pattern,
humans provide data to help train the IDW—and there
are endless conversations or variations of conversations
that humans can help with. Flows that incorporate HITL
reach out to their humans-in-the-loop on different
channels—whether it’s a call center, chat channels, text
messages, or collaborative tools like Slack—to get the
needed information; in turn, the �lows update their
knowledge bases and skills. In other scenarios—as has
been previously covered—when the IDWs get stuck on a
problem, they are guided by humans with what to do
next. Team members can either feed the IDW
information for machine learning or script their
interactions in a particular way.

METACOGNITIVE BEHAVIOR. This is more of an
overarching pattern—one that embraces and
reinforces many of those described above. The idea
is to create a pattern of awareness within your
ecosystem so that, while IDWs are learning
individual skills, they are also managing their overall
learning. It’s one thing to learn a skill—dogs, for
instance, do it all the time—but it’s another thing to
be actively aware that you are learning (and to
subsequently project-manage that learning). For our
purposes, this could be as basic as having an IDW
check in about learning new skills set along a
timeline. It could also include higher-level
functionalities, like having an IDW check in with
suggestions based on user queries. (E.g., “I’ve
noticed many users are calling to request password
resets. Is this something I can learn to do?”) You
could also seek out new tools for your ecosystem,
and then vet them based on reputation or user
ratings.

5Conversational Design Patterns | Key Patterns for Lead Experience Architects

